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An efficient OðNÞ cluster Monte Carlo method for Ising models with long-range interactions
is presented. Our novel algorithm does not introduce any cutoff for interaction range and
thus it strictly fulfills the detailed balance. The realized stochastic dynamics is equivalent
to that of the conventional Swendsen–Wang algorithm, which requires OðN2Þ operations
per Monte Carlo sweep if applied to long-range interacting models. In addition, it is shown
that the total energy and the specific heat can also be measured in OðNÞ time. We demon-
strate the efficiency of our algorithm over the conventional method and the OðN log NÞ
algorithm by Luijten and Blöte. We also apply our algorithm to the classical and quantum
Ising chains with inverse-square ferromagnetic interactions, and confirm in a high accuracy
that a Kosterlitz–Thouless phase transition, associated with a universal jump in the mag-
netization, occurs in both cases.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Systems with long-range interactions exhibit more involved phase diagrams and richer critical phenomena than those
with only nearest-neighbor interactions. One of the most prominent examples is the Ising model with long-range interac-
tions, whose Hamiltonian is defined as
�bH ¼
X
i<j

bJijrz
i r

z
j ; ð1Þ
where rz
i ¼ �1, Jij is the coupling constant between the ith and jth sites ði; j ¼ 1;2; . . . ;NÞ, and N is the total number of spins.

Among the models described by Eq. (1), the one-dimensional chain with algebraically decaying interactions has been studied
most intensely so far. The interaction Jij for the model is written as
. All rights reserved.
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Jij ¼
1

r1þa
ij

; ð2Þ
where a is the parameter characterizing the range of interaction. (Note that a should be positive to assure the energy con-
vergence.) In spite of the extremely simple form of its Hamiltonian, the model is known to exhibit various critical behavior
with respect to the parameter a: When a is sufficiently large, the system belongs to the same universality class as the near-
est-neighbor model, i.e., no finite-temperature phase transitions [1,2]. At a ¼ 1, however, the system exhibits a Kosterlitz–
Thouless phase transition at a finite temperature [3–5]. In the regime 1=2 < a < 1, the critical exponents of the system
change continuously as a is decreased [6]. Finally, when a is equal to or smaller than 1=2, the system shows the critical expo-
nents of the mean-field universality [6]. Such rich and nontrivial phenomena associated with the long-range interactions
have attracted much interest and many researches have been done both theoretically and numerically.

In general, Monte Carlo simulations of long-range interacting spin models are quite difficult, since the CPU time per
Monte Carlo sweep grows quite rapidly as the system size increases. This is simply because there are NðN � 1Þ=2 different
pairs of spins to be considered in an N-spin system. For unfrustrated spin models, the cluster methods, such as the Swend-
sen–Wang [7] or Wolff [8] algorithms, are the methods of choice, since they almost completely eliminate correlations be-
tween successive spin configurations on the Markov chain. Unfortunately, the cluster algorithms share the same difficulty
with the single spin flip update. In 1995, however, Luijten and Blöte introduced a very efficient cluster algorithm [9]. What
they noticed was that, on average, only OðNÞ among OðN2Þ bonds contribute to cluster construction. By employing a rejec-
tion-free method based on binary search on a cumulative probabilities, they succeeded in reducing the number of operations
per Monte Carlo sweep drastically to OðN log NÞ. Recently, the same strategy has been applied to the quantum Monte Carlo
method for long-range ferromagnetic Ising models in a transverse external field [10].

In the present paper, we propose a still faster cluster Monte Carlo algorithm for long-range interacting ferromagnets. Our
method is based on the extended Fortuin–Kasteleyn representation of partition function [11,12] and an extremely effective
technique for integral random number generation, so-called Walker’s method of alias [13,14]. As the method of Luijten and
Blöte, the proposed algorithm does not introduce any cutoff for interaction range and realizes the identical stochastic
dynamics with the original OðN2Þ Swendsen–Wang method. The CPU time per Monte Carlo sweep is, on the other hand,
merely proportional to N instead of N log N or N2, and is an order of magnitude shorter than that of Luijten and Blöte for suf-
ficiently large systems. In addition to its speed, our algorithm has several advantages: First, it is quite robust, that is, it works
efficiently both for short-range and long-range interacting models as it stands. Second, the calculation of the total energy and
the specific heat are also possible in OðNÞ time without any extra cost. Third, our Monte Carlo algorithm is straightforwardly
extended for quantum models, such as the transverse-field Ising model, the Heisenberg model, etc.

The organization of the present paper is as follows: In Section 2, we briefly review the Swendsen–Wang cluster algorithm
and its OðN log NÞ variant by Luijten and Blöte. In Section 3, we present our new algorithm in detail. We also show how the
total energy and the specific heat are calculated in OðNÞ time, and the extension of the OðNÞ algorithm to the transverse-field
Ising model. In Section 4, a benchmark test of our new algorithm is presented. As an application of the OðNÞ algorithm, the
Kosterlitz–Thouless transition of the Ising chain with inverse-square interaction is investigated in Section 5. Especially, we
confirm the universality between the classical and quantum Ising models in a high accuracy. Section 6 includes a summary
and discussion, followed by appendices on some technical details about Walker’s method of alias.

2. Conventional cluster algorithms for Ising model with long-range interactions

2.1. Swendsen–Wang method

In this section, first we briefly review the cluster Monte Carlo method by Swendsen and Wang [7]. Each Monte Carlo
sweep of the Swendsen–Wang algorithm consists of two procedures, graph assignment and cluster flip. In the former pro-
cedure, one inspects all the bonds sequentially, and each bond is activated or deactivated with probability
Pij ¼ drz
i
;rz

j
½1� expð�2bJijÞ� ð3Þ
and ð1� PijÞ, respectively. Then, after the trials for all the bonds, each cluster of spins connected by active bonds is flipped at
once with probability 1=2, and a terminate configuration is generated.

The stochastic process achieved by the Swendsen–Wang algorithm is ergodic. It is also proved, with the help of the For-
tuin–Kasteleyn representation of the partition function [11,12], that the algorithm satisfies the detailed balance. The parti-
tion function of the Hamiltonian (1) is written as
Z ¼
X

c

Y
i<j

ebJijrz
i
rz

j ¼
X

c

YNb

‘¼1

ebJ‘r‘ ; ð4Þ
where Nbð¼ NðN � 1Þ=2Þ denotes the total number of bonds, ‘ is the bond index, and J‘ ¼ Jij and r‘ ¼ rz
i rz

j are the coupling
constant and the product of the spin states of the both ends of the bond ‘, respectively. We first extend the original phase
space of Ising spins fcgð¼ fðrz

1;rz
2; . . . ;rz

NÞgÞ to the direct product of phase spaces of spins fcg and graphs fgg. A graph g is
defined by a set of variables g‘ð‘ ¼ 1;2; . . . ;NbÞ, each of which is defined on each bond (or link). The graph variable g‘



K. Fukui, S. Todo / Journal of Computational Physics 228 (2009) 2629–2642 2631
describes whether the ‘th bond is activated ðg‘ ¼ 1Þ or not ðg‘ ¼ 0Þ. By using the extended phase space, the partition function
(4) is expressed as
Z ¼ C
X

c

X
g

xðc; gÞ ð5Þ
with
xðc; gÞ ¼
YNb

‘¼1

Dðr‘; g‘Þ V ‘ðg‘Þ; ð6Þ
where C is a constant and the summation
P

g runs over 2Nb possible graph configurations. The weight functions D and V ‘ are
defined as
Dðr‘; g‘Þ ¼
0 if g‘ ¼ 1 and r‘ ¼ �1;
1 otherwise;

�
ð7Þ

V ‘ðg‘Þ ¼ ðe2bJ‘ � 1Þg‘ ; ð8Þ
respectively. The equality between Eqs. (4) and (5) is verified by figuring out the summation with respect to g in the latter
X
g

xðc; gÞ ¼
X

g

YNb

‘¼1

Dðr‘; g‘ÞV ‘ðg‘Þ ¼
YNb

‘¼1

ðDðr‘;0ÞV ‘ð0Þ þ Dðr‘;1ÞV ‘ð1ÞÞ ¼
YNb

‘¼1

ð1þ dr‘ ;1ðe2bJ‘ � 1ÞÞ

¼ eb
PNb

‘¼1
J‘
YNb

‘¼1

ðe�bJ‘ þ dr‘ ;1ðebJ‘ � e�bJ‘ ÞÞ ¼ eb
PNb

‘¼1
J‘
YNb

‘¼1

ebJ‘r‘ ð9Þ
and thus C ¼ expð�b
P

‘J‘Þ. From Eq. (5), we can consider xðc; gÞ as a weight of the configuration ðc; gÞ in the extended phase
space.

The Swendsen–Wang method is a procedure to update the spin configuration dynamically by going through an interme-
diate graph configuration. Consider that the initial spin configuration is c. We assign a graph g for the spin configuration c
with the following probability:
PðgjcÞ ¼ xðc; gÞP
g0xðc; g0Þ

¼
YNb

‘¼1

V ‘ðg‘ÞDðr‘; g‘ÞP
g0
‘
V ‘ðg0‘ÞDðr‘; g0‘Þ

: ð10Þ
That is, for each bond we assign g‘ ¼ 1 with probability
Pðg‘ ¼ 1jr‘Þ ¼
V ‘ð1ÞDðr‘;1Þ

V ‘ð1ÞDðr‘;1Þ þ V ‘ð0ÞDðr‘; 0Þ
¼ dr‘;1ð1� e�2bJ‘ Þ: ð11Þ
This probability turns out to be the same as the one in Eq. (3). The cluster construction in the Swendsen–Wang algorithm is
thus equivalent to assigning graph variables in the Fortuin–Kasteleyn language. The second procedure (cluster flip) in the
Swendsen–Wang algorithm is also represented clearly in the Fortuin–Kasteleyn representation: Under a given graph config-
uration g, a new spin configuration c0 is selected according to probability
Pðc0jgÞ ¼ xðc0; gÞP
cxðc; gÞ

¼
QNb

‘¼1Dðr0‘; g‘ÞP
c

QNb
‘¼1Dðr‘; g‘Þ

: ð12Þ
Note that
QNb

‘¼1Dðr‘; g‘Þ takes either 1 or 0, depending on whether all the active bonds have r‘ ¼ 1, or not. The last equation
means that among all the allowed spin configurations, which have nonzero xðc; gÞ, for a given g, a configuration is chosen
with equal probability. This is equivalent to flipping each cluster of spins connected by active bonds independently with
probability 1=2.

The detailed balance condition of the Swendsen–Wang method is thus represented in a concrete form:
Pðc0jcÞxðcÞ ¼
X

g

Pðc0jgÞPðgjcÞxðcÞ ¼
X

g

xðc; gÞ xðc0; gÞ
xðgÞ : ð13Þ
Since the most right-hand side of Eq. (13) is symmetric under the exchange of initial and terminal spin states c and c0, the
detailed balance is satisfied automatically.

2.2. OðN log NÞ Method by Luijten and Blöte

It has turned out that the Swendsen–Wang cluster algorithm works quite well for wide variety of systems without frus-
tration. Especially, it removes almost completely the so-called critical slowing down near the continuous phase transition
point. Since there is no constraint about the range of interactions in its construction, the Swendsen–Wang algorithm is also
applicable to long-range interacting systems without any modification. However, since the number of bonds Nb is OðN2Þ in
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such systems, the number of operations required for one Monte Carlo sweep is proportional to N2, which is significantly
more expensive than those for the nearest-neighbor models.

A nifty solution for reducing drastically the number of operations from OðN2Þ to OðN log NÞ was devised by Luijten and
Blöte [9]. What they noticed is separating the activation probability P‘ into the two parts:
P‘ ¼ p‘ dr‘;1; ð14Þ
p‘ ¼ 1� expð�2bJ‘Þ: ð15Þ
If one chooses candidate bonds with probability p‘ and then activate them with probability dr‘ ;1 afterward, the probability P‘
is realized eventually. For choosing the candidates bonds, one could use a more efficient method than the exhaustive search,
since p‘ is independent of the spin state r‘ and predetermined statically at the beginning of the Monte Carlo simulation. In-
deed, it is seen that the number of candidate bonds are typically much smaller than Nb. The average number of candidate
bonds is estimated as
XNb

‘¼1

p‘ ¼
1
2

XN

i¼1

X
j–i

ð1� e�2bJijÞ � 1
2

XN

i¼1

Z L

1
dr rd�1ð1� e�2bJðrÞÞ � bN

Z L

1
dr rd�1JðrÞ: ð16Þ
Here, L ¼ N1=d is the linear extent of the system, and we assume the translational invariance and that Jij depends only on the
distance, i.e., Jij ¼ JðrijÞ. If JðrÞ decays faster than r�d, which is equivalent to the condition of energy convergence for the fer-
romagnetic models, the integral in the last expression converges to a finite value in the thermodynamic limit. Thus, at a fixed
temperature, the number of candidate bonds increases as N instead of N2.

For choosing candidate bonds, Luijten and Blöte adopted a kind of rejection-free method, which is based on the binary
search of cumulative probability tables. Let us define
qð0Þm ¼ pm

Ym�1

‘¼1

ð1� p‘Þ ðqð0Þ1 ¼ p1Þ; ð17Þ

Cð0Þm ¼
Xm

‘¼1

qð0Þ‘ ðCð0Þ0 ¼ 0 and Cð0ÞNbþ1 ¼ 1Þ; ð18Þ
where qð0Þm is the probability that the mth bond is eventually chosen as a candidate after the failure for the first, sec-
ond, . . ., and ðm� 1Þth bonds, and Cð0Þm is the cumulative probability of qð0Þm . When an uniform real random variable U
ð2 ½0;1ÞÞ is generated, U satisfies Cð0Þm�1 6 U < Cð0Þm with probability qð0Þm . The first candidate bond m can then be chosen by
searching the first element larger than U. After the mth bond is activated or deactivated depending on its spin state rm,
one can continue the same procedure using the tables
qðmÞn ¼ pn

Yn�1

‘¼mþ1

ð1� p‘Þ ðqðmÞmþ1 ¼ pmþ1Þ; ð19Þ

CðmÞn ¼
Xn

‘¼mþ1

qðmÞ‘ ðCðmÞm ¼ 0 and CðmÞNbþ1 ¼ 1Þ: ð20Þ
In practice, one does not have to prepare CðmÞn for all m’s, since CðmÞn is readily expressed in terms of Cð0Þm and qð0Þm as
CðmÞn ¼ pmþ1

qð0Þmþ1

ðCð0Þn � Cð0Þm Þ: ð21Þ
In other words, comparing CðmÞn to a random number U ðU 2 ½0;1ÞÞ is equivalent to comparing Cð0Þn to Cð0Þm þ ðq
ð0Þ
mþ1=pmþ1ÞU.

Besides an initial table setup, which requires OðNbÞ operations, searching an element in the table can be performed very
quickly by using the binary search algorithm. The number of operations required for each search is Oðlog NbÞ ¼ Oðlog NÞ,
which is significantly smaller than OðNbÞ for the naive sequential search. Since the average number of candidate bonds is
OðNÞ, a whole Monte Carlo sweep is accomplished by OðN log NÞ operations on average.

3. New OðNÞ cluster algorithm

3.1. Formulation of OðNÞ method

The factor log N in the method of Luijten and Blöte is due to the fact that they use the binary search algorithm in looking
for a next candidate. This factor might be removed if one can use some Oð1Þ method instead of the binary search. Walker’s
method of alias [13,14] has been known as such an Oð1Þmethod to generate integral random numbers according to arbitrary
probability distribution for a long time (Appendix A), and is a potential candidate for the replacement. Unfortunately, for the
Walker method one can not use the smart trick presented in Eq. (21) for reducing the number of tables. It means that one has
to prepare a table of length OðNbÞ for each m before starting the simulation. The total amount of memory storage for storing
all the tables is thus OðN2

bÞ ¼ OðN4Þ, which is not acceptable in practice. In the following, we present a different approach
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based on the extended Fortuin–Kasteleyn representation, which solves the storage problem and enables us to use the effi-
cient Oð1Þmethod by Walker with reasonable storage requirement, OðNbÞ (or OðNÞ for systems with translational invariance).

Our central idea is assigning a nonnegative integer to each bond instead of a binary (active or inactive). The integer to be
assigned is generated according to the Poisson distribution. The probability that a Poisson variable takes an integer k is given
by
f ðk; kÞ ¼ e�kkk

k!
; ð22Þ
where k is the mean of the distribution. Note that f ð0; kÞ ¼ e�k and therefore
X1
k¼1

f ðk; kÞ ¼ 1� e�k; ð23Þ
which is equal to p‘ in Eq. (15), if one puts k to be 2bJ‘. That is, if one generates an integer according to the Poisson distri-
bution with mean
k‘ ¼ 2bJ‘; ð24Þ
then it takes a nonzero value with probability p‘. Thus the bond-activation procedure in the conventional Swendsen–Wang
algorithm can be modified as follows: Generate a Poisson variable for each bond with mean 2bJ‘, then activate the bond only
when the variable is nonzero and the spins are parallel. At first glance, it seems that the situation is getting worse, since a
Poisson random number, instead of a binary, is needed for each bond. At this point, however, we leverage an important prop-
erty of the Poisson distribution: the Poisson process is that for random events and there is no statistical correlation between
each two events. It allows us to realize the whole distribution by calculating just one Poisson random variable with mean
ktot ¼

P
‘k‘. The following identity clearly represents the essence:
YNb

‘¼1

f ðk‘; k‘Þ ¼ f ðktot; ktotÞ
ðktotÞ!

k1!k2! � � � kNb
!

YNb

‘¼1

k‘
ktot

� �k‘

; ð25Þ
where ktot ¼
P

‘k‘. This identity is verified in a straightforward way by substituting Eq. (22) in both hands. The left-hand side
of Eq. (25) is the probability that k‘ is assigned to each bond. The right-hand side, on the other hand, stands for the proba-
bility of generating a single Poisson number ktot and then distributing k‘ events to each bond with the weight proportional to
k‘. Distributing each event can be carried out in a constant time using Walker’s method of alias. Since generating a Poisson
number with mean ktot takes only OðktotÞ time on average, the number of operations of the whole procedure is also propor-
tional to ktot ¼ 2b

P
‘J‘, which is OðNÞ for energy converging models.

Before closing this section, let us describe our OðNÞ algorithm in terms of an extended Fortuin–Kasteleyn representation.
Introducing a configuration k ¼ ðk1; k2; . . . ; kNb

Þ instead of g ¼ ðg1; g2; . . . ; gNb
Þ in the original representation, the partition

function is expressed as
Z ¼
X

c

X
k

YNb

‘¼1

Dðr‘; k‘ÞV ‘ðk‘Þ ¼
X

c

YNb

‘¼1

X1
k‘¼0

Dðr‘; k‘ÞV ‘ðk‘Þ ð26Þ
with
Dðr; kÞ ¼
0 if k P 1 and r ¼ �1;
1 otherwise;

�
ð27Þ

V ‘ðkÞ ¼
e�bJ‘ ð2bJ‘Þ

k

k!
: ð28Þ
The original partition function is easily recovered by performing the summation over k‘’s first.

3.2. Pseudo-algorithm

Based on the extended Fortuin–Kasteleyn representation formulated above, we now describe one Monte Carlo sweep of
the present OðNÞ algorithm:

(1) Generate a nonnegative integer k according to the Poisson distribution with mean ktot.
(2) Repeat the following procedure k times:
(2-a) Choose a bond ‘ with probability

k‘
ktot
¼ J‘PNb

‘0¼1J‘0
ð29Þ

by using Walker’s method of alias.
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(2-b) If r‘ ¼ 1 then activate bond ‘. If the bond is already activated, just do nothing.
(3) Flip each cluster with probability 1/2.

The probability that a particular bond ‘ is activated during the iteration in step (2) is evaluated as
dr‘ ;1
X1
k¼0

f ðk; ktotÞ
Xk

k‘¼1

k!

ðk� k‘Þ!k‘!
1� k‘

ktot

� �k�k‘ k‘
ktot

� �k‘

¼ dr‘;1
X1
k¼0

f ðk; ktotÞ 1� 1� k‘
ktot

� �k
" #

¼ dr‘ ;1½1� expð�k‘Þ�; ð30Þ

which is equal to the probability given in Eq. (3) or Eqs. (14) and (15). Thus, one can confirm that the present OðNÞ
algorithm realizes the identical stochastic dynamics as the Swendsen–Wang and Luijten–Blöte methods.
Furthermore, for a system with translational invariance, step (2-a) in the above procedure can be replaced by

(2-a0) Choose a site i with probability 1=N, then choose another site j with probability
JijP
j0–iJij0

: ð31Þ
In this way, the size of tables for the modified probabilities and alias numbers used in the Walker method (see Appendices A
and B for details) can also be reduced from OðN2Þ down to OðNÞ.
3.3. Total energy and specific heat measurement

Measuring the total energy is also costly for long-range interacting models. In Ref. [15], Krech and Luijten proposed a
method based on the fast Fourier transform. In this section, however, we show that the total energy and the specific heat
are also calculated in OðNÞ time in the present algorithm. Indeed, the both quantities are obtained free of charge during
Monte Carlo sweeps.

Let us consider the expression for the energy in the extended Fortuin–Kasteleyn representation. Differentiating the par-
tition function (26) with respect to the inverse temperature, we obtain
E ¼ � @

@b
ln

X
c

X
k

Wðc; kÞ
" #

¼
P

c

P
k

P
‘ðJ‘ � k‘=bÞWðc; kÞP
c

P
kWðc; kÞ ¼ Jtot �

1
b

X
‘

k‘

* +
MC

; ð32Þ
where Jtot ¼
P

‘J‘, and h� � � iMC denotes the Monte Carlo average of an observable in the present OðNÞ algorithm. Thus, in order
to calculate the total energy, nothing more than the information one uses during Monte Carlo sweeps is needed. It also ap-
plies to the the specific heat. Differentiating the right-hand side of Eq. (32) once again, one obtains the following expression
C ¼ � b2

N
dE
db
¼ � b2

N
1
b2

X
‘

k‘

* +
MC

� Jtot �
1
b

X
‘

k‘

 !2* +
MC

þ Jtot �
1
b

X
‘

k‘

* +2
24 35

¼ 1
N

X
‘

k‘

 !2* +
MC

�
X
‘

k‘

* +2

MC

�
X
‘

k‘

* +
MC

24 35 ð33Þ
for the specific heat, which is not simply a variance of energy (32) but has an extra term h
P

‘k‘iMC. We note that the expres-
sions for the total energy (32) and the specific heat (33) have a close relation with those for the quantum Monte Carlo meth-
od in the continuous imaginary-time path integral or the high-temperature series representations [16].

3.4. Quantum cluster algorithm for transverse-field Ising model

The Monte Carlo method has also been applied to various quantum spin systems and achieved great success [17], though
for frustrated quantum models, in which the quantum Monte Carlo method suffers from the notorious negative sign prob-
lem, alternative numerical approaches, such as the transfer-matrix renormalization group [18,19], might be preferable. The
present OðNÞMonte Carlo algorithm can be extended quite naturally to quantum spin systems with long-range interactions.
In this section, as a simplest example, we present a quantum cluster algorithm for the long-range Ising model in a transverse
external field. Application to other quantum spin models, such as the Heisenberg or the XY models, is also straightforward.

The Hamiltonian of the transverse-field Ising model with long-range interactions is defined as
H ¼ �
X
i<j

Jijrz
i r

z
j �

XN

i¼1

Crx
i ; ð34Þ
where C denotes the strength of transverse external field, and rx
i and rz

i are the Pauli spin operators at site i, which form an
orthogonal basis together with the identity operator and ry

i . According to the standard prescription [20], we start with divid-
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ing the Hamiltonian (34) into two parts, bond termsHb ¼ �
P

i<jJijrz
i rz

j and site termsHs ¼ �
PN

i¼1Crx
i . The partition function

is then expanded as
Fig. 1.
broken
is inser
deactiv
parallel
Z ¼ Tre�bH ¼ lim
M!1

X
/1

h/1j e�
b
MHb e�

b
MHs

� �M
j/1i ¼ lim

M!1

X
/1 ;...;/M

YM
m¼1

e�
b
MEm h/mje�

b
MHs j/mþ1i; ð35Þ
where M is called the Trotter number, which represents the number of slices ðm ¼ 1;2; . . . ;MÞ along the imaginary-time axis.
In Eq. (35), we inserted the identities

P
/m
j/mih/mj between the operators. The basis set f/mg is chosen so that frz

i g are diag-
onalized (and so is Hb), and Em � h/mjHbj/mi. We impose the periodic boundary conditions in the imaginary-time direction:
/Mþ1 ¼ /1. Expanding the exponential operators of the site Hamiltonian to the first order, we obtain the following discrete
imaginary-time path integral:
Z ¼ lim
M!1

X
/1 ;...;/M

YM
m¼1

e�
b
MEm h/mj

YN
i¼1

1þ bC
M
ðrþi þ r�i Þ

� �
j/mþ1i

¼ C lim
M!1

X
/1 ;...;/M

YM
m¼1
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where r�i ¼ ðrx
i � iry

i Þ=2 are the spin ladder operators, rðmÞi � h/mjrz
i j/mi, and C is a constant. Thus, the partition function of

the transverse-field Ising chain of N sites is represented by that of a two-dimensional classical Ising model of M � N sites,
where the interactions are long-ranged along one axis (real space direction) and short-ranged along the other axis (imagi-
nary-time direction). The coupling constants in both directions are bclJ

ðspaceÞ
ij ¼ bJij=M and bclJ

ðtimeÞ ¼ � 1
2 lnðbC=MÞ, respec-

tively, where bcl is a fictitious inverse temperature of the mapped system. The OðNÞ cluster algorithm presented in the
previous subsection is then applied to this classical Ising model straightforwardly.

Furthermore, it has been shown that one can take the Trotter limit ðM !1Þ in Eq. (36), and perform Monte Carlo sim-
ulations directly in the imaginary-time continuum [21,22]. It is possible because the coupling constant along the imaginary-
time axis JðtimeÞ increases as M does. The average number of antiparallel pairs (or kinks) remains finite even in the continuous-
time limit, and therefore one does not have to take configurations with infinite number of kinks into account. Specifying the
number of kinks by n and its space-time position by ðsp; spÞ ðp ¼ 1;2; . . . ;nÞ, we obtain the continuous-time path integral rep-
resentation of the partition function
Z ¼
X
/0

e�bE0 þ
X1
n¼1

X
fspg

Z b

0
ds1

Z b

s1

ds2 � � �
Z b

sn�1

dsnC
n
Ynþ1

p¼1

e�ðsp�sp�1ÞEp�1

24 35; ð37Þ
where s0 ¼ 0, snþ1 ¼ b, and Ep is the diagonal energy h/jHbj/i of the spin configuration between the pth and ðpþ 1Þth kinks
ðEn ¼ E0Þ. In Fig. 1(a) an example of path integral configuration is shown.

The cluster algorithm is also defined directly in the Trotter limit. Since the activation probability of temporal bond with
parallel spins, 1� expð2bclJ

ðtimeÞÞ ¼ 1� bC=M, becomes almost unity for M 	 1, the probability of finding n inactive links
(open squares in Fig. 1) in a uniform temporal segment of unit imaginary time, which contains M=b Trotter slices, is given
by a Poisson distribution,
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(a) Example of the space-time configuration in the continuous-time path integral representation. The arrows at the bottom denote /0. Solid and
lines denote the continuously aligned up and down spins, respectively. The open circles represent the space-time position where an ladder operator
ted. (b) Possible graph configuration assigned to spin configuration (a). The open squares represent the positions where the temporal bond is
ated, while the filled circle represent those where a spatial bond is activated. The spatial long-range bonds are activated only when the spins are
at both ends as depicted in (a), where the candidates connecting antiparallel spins are rejected (x-marks).
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M=bCnð1� bC=MÞðM=b�nÞðbC=MÞn 
 f ðn;CÞ: ð38Þ
Similarly, the probability of finding n spatial candidate links (horizontal dashed lines in Fig. 1) between parallel spins at site i
and j in unit imaginary time is f ðn;2JijÞ. After all, the overall probability of finding n events in total at some site or bond is
given by f ðn;KÞ with
K ¼ NCþ 2Jtot: ð39Þ
Since these events are statistically independent with each other, a series of events is generated successively by using the
exponential distribution for the temporal interval t between two events:
pðtÞdt ¼ Ke�Ktdt: ð40Þ
At each imaginary time, then a site or bond is chosen according to the probabilities C=K or 2Jij=K, respectively. This is again
done in a constant time by using the Walker method. If a site is chosen, the temporal bond is deactivated, i.e., clusters are
disconnected at this space-time position. If a bond is selected (and if the spins on its ends are parallel), on the other hand, a
spatial link is inserted, i.e., two sites are connected at this imaginary time (horizontal solid lines in Fig. 1). At the space-time
points where the spin changes its direction (open circles in Fig. 1), we always deactivate the temporal bond. By repeating this
procedure until the imaginary time b is reached, the whole lattice is divided into several clusters [Fig. 1(b)]. Finally each clus-
ter is flipped with probability 1=2 to generate a terminal configuration.

The number of operations per Monte Carlo sweep is proportional to the number of generated events. Its average is given
by bK, which is proportional to the system size N as the OðNÞ algorithm for classical models. We note that the OðNÞ quantum
cluster algorithm presented in this section is also formulated in the same way in the high-temperature series representation
[10].

4. Performance test

In order to demonstrate the efficiency of the present method, we carried out Monte Carlo simulations for the classical
mean-field (or infinite-range) model of various system sizes ðN ¼ 2;4; . . . ;225Þ. We use the naive Swendsen–Wang and
Luijten–Blöte methods as benchmarks. The coupling constants of the mean-field model is given by
Jij ¼
1
N

ð41Þ
for all i – j. The denominator N is introduced to prevent the energy density of the system from diverging in the thermody-
namic limit. We choose the mean-field model as a severest test case for these algorithms, though simpler and faster algo-
rithms, even exact analytic results, exist for this specific model. The benchmark test was performed on a PC workstation
(CentOS Linux 5.1, Intel Xeon 3.2GHz, 1MB cache, GNU C++ 4.1.1).

We confirm that all these algorithms produce the same results, total energy, specific heat, magnetization density squared,
Binder cumulant, etc, within the error bar in the whole temperature range we simulated. The CPU time spent for one Monte
Carlo sweep at the critical temperature ðT ¼ 1Þ is shown in Fig. 2. For the naive Swendsen–Wang algorithm, as one expects,
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the CPU time grows rapidly as N2. On the other hand, it is clearly seen in Fig. 2 that the present algorithm has a different
scaling, linear to the system size, and is indeed much faster than the Swendsen–Wang method except for very small system
sizes ðN 6 4Þ. The present and Luijten–Blöte methods exhibit a similar scaling behavior, but the former is faster for all the
system sizes we simulated. To see the difference in scaling behavior in detail, we plot the relative speed of the present algo-
rithm to the latter in the inset of Fig. 2. For N K 105, it scales as log N, which is consistent with the performance difference
between the Walker and the binary search algorithms. Around the system size N 
 105, however, the results for the present
algorithm start to deviate from the N-linear scaling. Those for the Luijten–Blöte method shows a similar anomalous behavior,
but the situation is much worse in this case as seen in the inset of Fig. 2. We attribute these anomalies to the occurrence of
cache miss, for simulating system of N ¼ 105 spins requires about 1.6 MB of memory (4N byte for spin configuration and
ð8þ 4ÞN byte for modified probabilities and aliases in the Walker method), which is comparable with the cache memory size
(1 MB) of the system used for the present benchmark test. The naive Swendsen–Wang method should also suffer from the
same problem, but in the present benchmark test its effect seems to be hidden under the quadratic growth in the number of
operations.

In summary, among the existing three algorithms the present OðNÞ method is the fastest except for very small system
sizes. Especially, it outperforms the Swendsen–Wang method by four orders of magnitude at N ¼ 219 and the Luijten–Blöte
method by about factor twenty at N ¼ 225. This efficiency of the present method enables us to simulate much larger systems
or further improve statistics as compared with the previous Monte Carlo studies, as demonstrated in the next section.

5. Kosterlitz–Thouless transition in Ising chain with inverse-square interactions

In this section, as a nontrivial example, we apply our OðNÞ cluster algorithm to the phase transition of the one-dimen-
sional Ising model with inverse-square interactions [Eq. (2) with a ¼ 1]. As we mentioned in the introduction, among the
models with algebraically decaying interactions, this model is special as a boundary case, i.e., it has the weakest (or shortest)
interactions to trigger a finite-temperature phase transition. What is more, this phase transition belongs to the same univer-
sality class as the Kosterlitz–Thouless transition [3–5], where logarithmic excitations brought by formation of domain walls
compete with the entropy generation. The Kosterlitz–Thouless transition is characterized by an exponential divergence of
the correlation length toward the critical temperature TKT and a finite jump in the magnetization. Especially, the amount
of the magnetization gap at the critical point is conjectured to satisfy the following universal relation:
Fig. 3.
interact
dashed
(see Fig
2m2 ¼ TKT; ð42Þ
where m2 ¼ hð
P

irz
i Þ

2i=N2, being the square of magnetization density. For the classical Ising chain with inverse-square inter-
actions, it is confirmed that a phase transition of Kosterlitz–Thouless universality occurs by an extensive Monte Carlo study
[23].

We perform Monte Carlo simulations by using the OðNÞ cluster algorithm for the chain length L ¼ 23;24;

. . . ;220ð¼ 1048576Þ. We impose periodic boundary conditions. In order to minimize the effect of boundary conditions, we
use the following renormalized coupling constant
eJ ij ¼
X1

n¼�1

1

ði� j� nLÞ2
¼ p2

L2 sin2 pði�jÞ
L

; ð43Þ
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Temperature dependence of magnetization density squared for (a) classical ðC ¼ 0Þ and (b) quantum ðC ¼ 1Þ Ising chains with inverse-square
ions. System sizes are L ¼ 23, 24, � � �, 220 from the top to the bottom. The error bar of each data point is much smaller than the symbol size. The
lines denote the universal jump relation Eq. (42). The filled diamond indicates the critical temperature obtained from the finite-size scaling analysis
. 4 below) and the magnetization density squared just below the critical point.
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in which contribution from all periodic images is taken into account. It reduces to the bare coupling constant (2) in the ther-
modynamic limit L!1. Measurement of physical quantities is performed for 524288 Monte Carlo sweeps after discarding
8192 sweeps for thermalization.

In Fig. 3, we show the temperature dependence of the magnetization density squared for (a) C ¼ 0 and (b) C ¼ 1. For the
classical system ðC ¼ 0Þ, our results coincide quite well with the previous Monte Carlo study [23]. In both cases, m2 decreases
monotonically as the temperature increases. At high temperatures, m2 vanishes quite rapidly as the system size increases,
while it seems converging to a finite value in the low temperature regime though the convergence is rather slow. This sug-
gests an emergence of long-range order at some finite critical temperature. At low temperatures, m2 of the quantum system
is smaller than the classical one. Indeed, m2 < 1 even at T ¼ 0 for C ¼ 1, which is in contrast to the classical case, m2 ¼ 1. This
is due to quantum fluctuations introduced by the transverse external field. In a previous quantum Monte Carlo study [10],
intersections of magnetization curves for different system sizes at intermediate temperatures have been reported. In the
present study, however, we do not observe such a nonmonotonic behavior regardless of the system size. We would attribute
this discrepancy to a relaxation problem in the Monte Carlo calculation in Ref. [10], where only a local flip scheme is used for
updating spin configurations.

In order to discuss the critical behavior in detail, next we perform a finite-size scaling analysis. As is well known, the stan-
dard finite-size scaling technique does not work in the case of the Kosterlitz–Thouless transition, for the correlation length
exhibits an exponential divergence. Instead of the ordinary finite-size scaling, which depends on an algebraic divergence of
the correlation length, an alternative scaling form for the magnetization has been suggested from the renormalization group
equations [5,24,25]:
Fig. 4.
sizes ar
2m2

T
� 1 ¼ ‘�1Fðt‘2Þ; ð44Þ
where FðxÞ is a scaling function, t ¼ T=TKT � 1, ‘ ¼ logðL=L0Þ, and L0 a constant. It is confirmed that this finite-size scaling
assumption works well for the two-dimensional XY model [25], in which the helicity modulus, instead of the magnetization,
is the quantity exhibiting a universal jump.

In Fig. 4, we show the scaling plots for C ¼ 0 and 1. Both data are scaled excellently by using the same scaling form (44),
where we have only two fitting parameters, T KT and L0. This strongly supports that the magnetization shows the universal
jump (42) at the critical point. From these scaling plots we conclude
TKT ¼
1:52780ð9Þ for C ¼ 0
1:38460ð25Þ for C ¼ 1

�
ð45Þ
for the Kosterlitz–Thouless critical temperature. The result for the classical case is compared with that in the previous Monte
Carlo study, TKT ¼ 1:5263ð4Þ [23], which differs slightly beyond the error bar. This tiny discrepancy might be due to the dif-
ference in the way of scaling analysis. In Ref. [23] the magnetization data at low temperatures are first extrapolated to the
thermodynamic limit, then further extrapolated towards the critical point, whereas the Monte Carlo data are directly used to
estimate the critical temperature in the present finite-size scaling analysis. Thus, we expect that the present estimate for TKT

is more reliable.
As for the quantum system ðC ¼ 1Þ, the critical temperature is lower than the classical one due to the quantum fluctua-

tions. However, the finite-scaling analysis confirms that the phase transition belongs to the Kosterlitz–Thouless universality
class as in the classical case. The finite-size scaling plots shown in Fig. 4 suggest that the scaling function itself is universal as
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Scaling plot of magnetization density squared for (a) classical ðC ¼ 0Þ and (b) quantum ðC ¼ 1Þ Ising chains with inverse-square interactions. System
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well. As C is increased further, TKT decreases monotonically, and it finally vanishes at a critical transverse field Cc (
 2:52
[26]), where a quantum phase transition occurs. At this point some exotic quantum critical behavior with a nontrivial
dynamical exponent z is expected, since the ð1þ 1Þ-dimensional system is extremely anisotropic, i.e., in real space direction
the system has long-range interactions, whereas the interaction in the imaginary-time direction is still short ranged. More
detailed analyses on the quantum criticality of the transverse-field Ising model will be presented elsewhere [26].

6. Summary and discussion

We presented an OðNÞ cluster algorithm for Ising models with long-range interactions. The algorithm proposed in the
present paper is ‘exact’ in the sense that it does not introduce any cutoff for interaction range and thus it strictly fulfills
the detailed balance. Our algorithm is formulated based on the extended Fortuin–Kasteleyn representation, where bond vari-
ables have a nonnegative integral value instead of a binary number. For each bond, an integer is generated according to the
Poisson distribution. However, it does not necessarily mean that each Poisson variable has to be generated one by one. We
show that generating an overall Poisson distribution and ex-post assignment of events, using Walker’s method of alias, are
statistically equivalent to the naive Swendsen–Wang method. In Section 4, we demonstrated the N-linear scaling behavior in
the CPU time for the mean-field model.

The present method has several advantages over the existing methods, such as the Metropolis method, the Swendsen–
Wang algorithm [7], the improvement by Luijten and Blöte [9], or the recently proposed OðNÞ method [27], in several as-
pects: (a) The CPU time per Monte Carlo sweep is OðNÞ. (b) It works effectively both for short-range and long-range inter-
acting models. (c) It is a cluster algorithm and free from the critical slowing down near the critical point. (d) It is possible
to formulate a single-cluster variant [8]. (e) It is very easy to implement the algorithm, based on an existing Swendsen–Wang
code. (f) It can also be used for systems without translational invariance, though it once costs OðN2Þ to initialize lookup ta-
bles. (g) Calculation of the total energy and the specific heat can be done all together in OðNÞ time. (h) It can be applied to
Potts, XY, and Heisenberg models with the help of Wolff’s embedding technique [8]. (i) Extension to quantum models, such
as the transverse-field Ising model or the Heisenberg model, is also possible straightforwardly.

In Section 5, we have applied our new algorithm to the phase transition of Ising model with inverse-square interactions,
where we see that the OðNÞ method works ideally for both of the classical and quantum systems. It is confirmed in a high
accuracy that the phase transition belongs to the same universality as the Kosterlitz–Thouless transition.

Finally, let us discuss the efficiency of the present algorithm at very low temperatures. The Swendsen–Wang algo-
rithm itself works quite effectively even away from the critical point. At high temperatures, since the lattice will be di-
vided into a set of tiny clusters, the stochastic dynamics becomes essentially the same as the conventional single spin
flip update. On the other hand, at low temperatures, a huge cluster tends to span the whole lattice, and thus the ordered
states with all up and all down spin configurations can be connected with each other by a single Monte Carlo step. How-
ever, at low temperatures, the calculation cost of the present method for a fixed system size N grows linearly as b in-
creases since ktot is proportional to b, whereas that of the naive Swendsen–Wang method is constant regardless of the
temperature for classical Ising models. It indicates that at lower temperatures than some threshold 1=bthresh, the naive
method outperforms the present method. At extremely low temperatures, almost all the bonds are activated. The present
method then activates such bonds many times, which is the cause of the slowing down. Although the b-linear increase
of CPU time is inevitable for quantum systems, where the standard quantum Monte Carlo algorithms for short-range
models also suffer from the same slowing down, however, one can adopt a ‘‘hybrid” scheme to optimize the calculation
cost at intermediate temperatures, maxðJ‘ÞKb < bthresh for classical models. Suppose J‘’s are sorted in descending order,
and we use the naive method for the first n bonds and the OðNÞ method for the others. The CPU time CðnÞ per Monte
Carlo sweep is estimated as
CðnÞ ’ Anþ B
XNb

‘¼nþ1

2bJ‘; ð46Þ
where A and B are some constants. The optimal value of n is then given by DC ¼ Cðnþ 1Þ � CðnÞ ¼ A� 2BbJn ¼ 0. For the one-
dimensional model with algebraically decaying interactions (2), for example, we have
nopt

Nb

 N�1 2Bb

A

� � 1
1þa

: ð47Þ
The threshold bthresh is defined as the inverse temperature where nopt ¼ Nb ’ N2, that is, bthresh 
 ðA=2BÞN1þa, which grows as
the system size N increases.
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Appendix A. Walker’s method of alias

Consider a random variable X which takes an integral value i according to a probability pi (1 6 i 6 N and
P

pi ¼ 1). In this
appendix, we discuss how to generate such random numbers effectively. One of the simplest and the most well-known
methods is the one based on rejection:

Rejection Method

(1) Generate a uniform integral random variable M ð1 6 M 6 NÞ.
(2) Generate a uniform real random variable U ð0 6 U < 1Þ.
(3) If U is smaller than pM=pmax then X ¼ M, otherwise repeat from (1).

Here, pmax ¼maxðpiÞ. Since the acceptance rate in step (3) is 1=ðNpmaxÞð� qÞ, the probability of obtaining X ¼ i eventually
is
P1

r¼1pið1� qÞr�1q ¼ pi. Notice that the number of iterations is
P1

r¼1rð1� qÞr�1q ¼ 1=q ¼ Npmax on average, and therefore it
would take OðNÞ time for each generation. Especially, the efficiency decreases quite rapidly as the variance of pi increases.
One may reduce the number of operations down to Oðlog NÞ by employing the binary search on the table of cumulative prob-
abilities (see Section 2.2). However, there exists a further effective method, called ‘‘Walker’s method of alias” [13,14], which
is rejection free and generates a random integer in a constant time.

The Walker algorithm requires two tables of size N, which need to be calculated in advance. One is the table of integral
alias numbers fAigð1 6 Ai 6 NÞ and the other is that of modified probabilities fPigð0 6 Pi 6 1Þ. Using these tables a random
integer is generated by the following procedure:

Walker’s Method of Alias

(1) Generate a uniform integral random variable M ð1 6 M 6 NÞ.
(2) Generate a uniform real random variable U ð0 6 U < 1Þ.
(3) If U is smaller than PM then X ¼ M, otherwise X ¼ AM .

This procedure has no iterations, and thus completes in a constant time. The meaning of the tables fAig and fPig and the
correctness of the algorithm is readily understood with the following example:
i
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

pi
 0
 1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

Pi
 0
 1

3

2
3

3
3

3
3

2
3

2
3

1
3

2
3
 0
 2

3

1
3

Ai
 10
 9
 8
 *
 *
 5
 6
 6
 7
 7
 8
 8
The modified probabilities Pi are determined from pi (see Appendix B), which gives the probabilities whether one should ac-
cept the firstly chosen number or choose the alias number Ai. Let us consider, for example, the probability of X ¼ 9. There are
two possibilities: One is M ¼ 9 and U < P9, and the other is M ¼ 2 and U P P2 since A2 ¼ 9. The sum of these two probabil-
ities is
1
12
½P9 þ ð1� P2Þ� ¼

1
9
; ðA:1Þ
which is equal to p9 as expected. One can confirm that fPig and fAig are given in the example so that
pi ¼
1
N

Pi þ
XN

j¼1

ð1� PjÞdi;Aj

" #
ðA:2Þ
holds for i ¼ 1;2; . . . ;N. Together with the ordinary requirement for probabilities, 0 6 Pi 6 1ði ¼ 1;2; . . . ;NÞ, Eq. (A.2) is the
necessary condition for fPig and fAig to satisfy.

In practice, when N is not a power of two, we expand the size of tables from N to Nopt, where Nopt is the smallest integer
satisfying Nopt P N. For N þ 1 6 i 6 Nopt, we assume pi ¼ 0. In this way, generating M in step (1) is optimized as a bit shift
operation on a 32- or 64-bit integral random number [14]. Furthermore, steps (2) and (3) can be replaced by a comparison
between two integral variables by preparing a table of integers f232Pig (or f264Pig) instead of floating point numbers fPig, by
which a costly conversion from an integer to a floating point variable can also be avoided.

In summary, by using the Walker method, integral random numbers according to arbitrary probabilities can be generated
in a constant time. This extreme efficiency is essential for the present OðNÞ cluster Monte Carlo method. In the next appendix,
we describe how to prepare the tables fPig and fAig.
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Appendix B. Preparation of modified probabilities and aliases

In the original paper by Walker [13] and also in the standard literature [14], only a naive OðN2Þ method is presented for
initializing fPig and fAig. Here we propose for the first time an efficient alternative procedure, which takes only OðNÞ time.

Consider the following table of probabilities for fpig:
i
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

pi
 0
 1

36

2

36

3

36

4

36

5

36

6

36

5

36
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36

3

36

2

36

1

36

Pi
 0
 1

3

2
3

3
3

4
3

5
3

6
3

5
3

4
3

3
3

2
3

1
3

Here Pi is initially set to a tentative value Npi for i ¼ 1; . . . ;N. First we rearrange the table so that all the elements with Pi P 1
precede those with Pi < 1

The rearrangement can be done by N steps in contrast to the perfect sorting, which is an OðN log NÞ procedure. The white

triangle points to the rightmost element with Pi P 1 and the black triangle points to the rightmost element in the rearranged
table.

Next, we determine the alias numbers Ai sequentially from the right. We fill the ‘‘shortfall” ð1� PiÞ of the element pointed
by the solid triangle by the one pointed by the white triangle. The latter is always large enough, since Pi P 1 by definition. In
the present example, first the shortfall of the rightmost element ð1� P1Þ ¼ 1 is filled by the element with i ¼ 10. The alias
number for i ¼ 1 is then set to 10 and P10 is replaced by P10 � ð1� P1Þ ¼ 0. Since P10 is no more larger than nor equal to unity,
we shift the white triangle to the left by one. We repeat the same for the next ‘‘unfilled” element. After four iterations, the
table is transformed as follows:

Here the solid and white triangles are shifted four and three times from their original positions, respectively. The above pro-

cedure is repeated until the black triangle points to the same element as the white one, i.e., all the elements get filled. One
should note that the black triangle always moves by one after each iteration, though the white one may stay on the same
element depending whether Pi P 1 or not after the step. The whole procedure is thus completed at most after ðN � 1Þ iter-
ations. In the present example, after 10 iterations we end up with

which is equivalent to the table presented in Appendix A.
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